网站首页 招生报考 高考复习 汉语字词 英语词汇 写作素材 旧版资料
汉字 | 高中数学三角函数公式 | ||||||||||||||||||||||||||||||||||||||||||||||||||
释义 | ????? ?????? 三角函数 友情提醒:由于高三网站宽度限制,上传文本可能存在页面排版较乱的情况,如果点击下载或全屏查看效果更佳。 查看本科目或其他科目更多知识点 考试内容:角的概念的推广.弧度制.任意角的三角函数.单位圆中的三角函数线.同角三角函数的基本关系式.正弦、余弦的诱导公式.两角和与差的正弦、余弦、正切.二倍角的正弦、余弦、正切.正弦函数、余弦函数的图像和性质.周期函数.函数y=Asin(ωx+φ)的图像.正切函数的图像和性质.已知三角函数值求角.正弦定理.余弦定理.斜三角形解法. 考试要求:(1)理解任意角的概念、弧度的意义能正确地进行弧度与角度的换算.(2)掌握任意角的正弦、余弦、正切的定义;了解余切、正割、余割的定义;掌握同角三角函数的基本关系式;掌握正弦、余弦的诱导公式;了解周期函数与最小正周期的意义.(3)掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式.(4)能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明.(5)理解正弦函数、余弦函数、正切函数的图像和性质,会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A.ω、φ的物理意义.(6)会由已知三角函数值求角,并会用符号arcsinx\arc-cosx\arctanx表示.(7)掌握正弦定理、余弦定理,并能初步运用它们解斜三角形.(8)“同角三角函数基本关系式:sin2α+cos2α=1,sinα/cosα=tanα,tanα?cosα=1”. 解题思路: 其关键是审清题意,画出图形,建立解三角形模型,最后解答。 1、解应用题的一般步骤是:(1)分析:审题、理解题意,分清已知与未知,根据题意画出示意图;(2)建模:确定实际问题所涉及的三角形以及三角形中的已知或未知的元素。把已知量与求解量集中在一个三角形中;(3)求解:运用正弦定理、余弦定理及面积公式等有序地解出这些子三角形,求得数学模型的解。(4)检验:检验所求的解是否符合实际意义,从而得出实际问题的解。 2、解应用题中的几个角的概念(1)仰角、俯角(2)方向角(3)方位角 三角函数? 知识要点
②终边在x轴上的角的集合: ③终边在y轴上的角的集合: ④终边在坐标轴上的角的集合: ⑤终边在y=x轴上的角的集合: ⑥终边在 ⑦若角 ⑧若角 ⑨若角 ⑩角 2. 角度与弧度的互换关系:360°=2 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. 、弧度与角度互换公式:? 1rad= 3、弧长公式:
5、三角函数在各象限的符号:(一全二正弦,三切四余弦)
?? 正弦线:MP;?? 余弦线:OM;??? 正切线: AT. 7. 三角函数的定义域:
8、同角三角函数的基本关系式:
9、诱导公式:
“奇变偶不变,符号看象限” 三角函数的公式:(一)基本关系 公式组二????????????????? 公式组三
公式组四?????????????? 公式组五?????????????? 公式组六????????????
(二)角与角之间的互换 公式组一????????????????????????????????? 公式组二
10. 正弦、余弦、正切、余切函数的图象的性质:
② ③
④
⑤当 ⑥
⑦函数 ⑧定义域关于原点对称是 奇偶性的单调性:奇同偶反. 例如: 奇函数特有性质:若
⑩ 11、三角函数图象的作法: 1)、几何法: 2)、描点法及其特例——五点作图法(正、余弦曲线),三点二线作图法(正、余切曲线). 3)、利用图象变换作三角函数图象. 三角函数的图象变换有振幅变换、周期变换和相位变换等. 函数y=Asin(ωx+φ)的振幅|A|,周期 由y=sinx的图象上的点的横坐标保持不变,纵坐标伸长(当|A|>1)或缩短(当0<|A|<1)到原来的|A|倍,得到y=Asinx的图象,叫做振幅变换或叫沿y轴的伸缩变换.(用y/A替换y) 由y=sinx的图象上的点的纵坐标保持不变,横坐标伸长(0<|ω|<1)或缩短(|ω|>1)到原来的 由y=sinx的图象上所有的点向左(当φ>0)或向右(当φ<0)平行移动|φ|个单位,得到y=sin(x+φ)的图象,叫做相位变换或叫做沿x轴方向的平移.(用x+φ替换x) 由y=sinx的图象上所有的点向上(当b>0)或向下(当b<0)平行移动|b|个单位,得到y=sinx+b的图象叫做沿y轴方向的平移.(用y+(-b)替换y) 由y=sinx的图象利用图象变换作函数y=Asin(ωx+φ)(A>0,ω>0)(x∈R)的图象,要特别注意:当周期变换和相位变换的先后顺序不同时,原图象延x轴量伸缩量的区别。 4、反三角函数: 函数y=sinx, 函数y=cosx,(x∈[0,π])的反应函数叫做反余弦函数,记作y=arccosx,它的定义域是[-1,1],值域是[0,π]. 函数y=tanx, 函数y=ctgx,[x∈(0,π)]的反函数叫做反余切函数,记作y=arcctgx,它的定义域是(-∞,+∞),值域是(0,π). 反三角函数:⑴反正弦函数 注: ⑵反余弦函数 注:① ② ⑶反正切函数:
注: ⑷反余切函数:
注:① ② ⑵ 正弦、余弦、正切、余切函数的解集:
①
③ ③
组一 组二
组三 三角函数不等式
若 经典例题:
|
||||||||||||||||||||||||||||||||||||||||||||||||||
随便看 |
|
大学招生报考网高考复习资料大全提供高考语文、数学、英语、政治 、历史、物理、化学、地理、生物、文综、理综等高考复习资料,是高考复习及应试的有利工具。