释义 |
arctanx是奇函数。f(x)=arctanxf(-x)=arctan(-x)=-arctanx=-f(x)所以,函数为奇函数。判断函数奇偶性的基本就是判断f(x)与f(-x)是相等(偶函数)、相反(奇函数)、还是没有特定关系(非奇非偶)。  奇函数偶函数判断方法 1.看图像,奇函数关于原点对称;偶函数关于Y轴对称; 即奇又偶就是即关于原点对称又关于Y轴对称,这种只有常数函数且为0的函数; 非奇非偶就是即不关于原点对称又不关于y轴对称的函数 2.看其能否满足一定的条件奇函数,对任意定义域内的x都满足f(-x)=-f(x);偶函数,对任意定义域内的x都满足f(-x)=f(x); 即奇又偶,对任意定义域内的x都满足f(-x)=f(x)且满足f(-x)=-f(x),这只有常数为0的函数; 非奇非偶,对任意定义域内的x不,f(-x)=f(x)和f(-x)=-f(x),都不成立. 奇函数和偶函数的定义 一、偶函数与奇函数的定义: 1、偶函数:对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x)那么f(x)就叫做偶函数,偶函数的图像关于y轴对称。 2、奇函数:对于函数f(x)的定义域内的任意一个x,都有f(-x)=-f(x)那么f(x)就叫奇函数,奇函数的图像关于原点对称。 提升总结 (1)、对称性:奇、偶函数的定义域关于原点对称; (2)、整体性:奇偶性是函数的整体性质,是对定义域内的每一个x都成立的 (3)、可逆性:f(-x)=-f(x)~f(x)是奇函数 f(-x)=f(x)~f(x)是偶函数 (4)、若函数f(x)为奇函数,且在x=0处有定义,则f(0)=0 (5)、定义域关于原点对称的非0常函数是偶函数,定义域关于原点对称的常函数y=0,既是奇函数又是偶函数。 (6)、公共定义域关于原点对称:偶函数土偶函数=偶函数,奇函数土奇函数=奇函数,偶函数×偶函数=偶函数,奇函数×奇函数=偶函数,奇函数×偶函数=奇函数 |